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Metastates in Disordered Mean-Field Models:
Random Field and Hopfield Models
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We rigorously investigate the size dependence of disordered mean-field models
with finite local spin space in terms of metastates. Thereby we provide an
illustration of the framework of metastates for systems of randomly competing
Gibbs measures. In particular we consider the thermodynamic limit of the
empirical metastate 1/N3Y_, 4,m»> Where u,(n) is the Gibbs measure in the
finite volume {1,..,n} and the frozen disorder variable n is fixed. We treat
explicitly the Hopfield model with finitely many patterns and the Curie-Weiss
random field Ising model. In both examples in the phase transition regime the
empirical metastate is dispersed for large N. Moreover, it does not converge for
a.e. 7, but rather in distribution, for whose limits we give explicit expressions.
We also discuss another notion of metastates, due to Aizenman and Wehr.

KEY WORDS: Disordered systems; size dependence; random Gibbs states;
metastates; mean-field models; Hopfield model; random field model.

1. INTRODUCTION

In a recent series of papers [ NS1], [NS2], [ NS3], the interesting role of
the volume dependence in disordered systems having more than one
infinite volume Gibbs state was stressed. In a particularly interesting article
[ NS3] the notion of metastates, being probability measures on the states
of the system, was introduced to describe the volume dependence of a
system with frozen disorder. (See therein and the discussion with [P]
for implications on the theory of spin glasses and the relation to the
phenomena of replica symmetry breaking and non self averaging.) It is the
aim of this paper to provide a rigorous step into the investigation of size
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dependence by metastates by our investigation of examples of random
mean field systems.

In the general case of disordered lattice spin systems in the presence of
phase transitions, the problem of size dependence is the following. To start
with a nontrivial situation, assume that the system admits more than one
infinite volume Gibbs state. We consider the finite volume Gibbs measures
H4,(n), for a fixed realization of the disorder #, in the finite volume 4 ,. We
want to study a situation where the boundary conditions for the measures
#4,(n) do not preselect a particular infinite volume Gibbs measures. (There
are many natural situations, where it is (practically) impossible (or not of
interest) to select Gibbs measures by boundary conditions. This is the case
in spin glasses, where the Gibbs measures are not explicitly known. Note
moreover that in mean field systems it is impossible to put boundary
conditions at all.)

To be concrete, we imagine that, for large N, the state of the system
will be close to a mixture of random infinite volume Gibbs measures.
That is, a good approximation for the finite volume Gibbs measures will
often be

ta(m) =Y, pln) w7 (n) (1.1)

where (47 (n}),,. , are the extremal Gibbs measures in the infinite volume.

The problem of size dependence is: Characterize the behavior of u 4 (1)
along the sequence A,. This has some analogy with studying the orbit of
a dynamical system with “time” N (see [ NS3]). Possible “extremes” that
could occur here, are e.g. 1) convergence to one infinite volume Gibbs
measure or 2) an “erratic” sequence of states, a behavior that was named
chaotic size dependence in [NS3]. The latter possibility could already
happen if there are only two states between which the system is “randomly
oscillating.” A first question one may ask is: What Gibbs measures can be
constructed through any subsequences 4, at all? More interesting even,
led by the dynamical system analogy, the following object was introduced
in [NS3] to describe the “trajectory” N u, (#) in more detail:

1
N

M=

k() : B (12)

n=1

I

We will refer to x,(n) as the “empirical metastate” and it will the main
object of our study. Note that x, is a random measure (through its
n-dependence) on the states of the system. For large N it will effectively be
supported by the infinite volume Gibbs measures.
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There are various scenarios for the large N-behavior of k(7). If the
system admits just one infinite volume Gibbs measure u .(#), the situation
is easy: x y(n) will converge to J, ,). But note that also in the presence of
phase transitions x, can converge to a J-measure. (Take as an example
the ordinary ferromagnetic 2d Ising model without disorder, at low tem-
peratures and put periodic boundary conditions. Then uy— 3(ut +u7)
with N1 co. Consequently ky— &y 5% +47)-)

Nondegeneracy for the metastate can arise for random systems
because, for a fixed realization of the disorder, the finite volume fluctua-
tions of the underlying random quantities could favor one of different
phases even when they are equivalent in the average, which one depending
on the fluctuation. While the structure of the phase diagram is nonrandom,
the degeneracy between the phases in the finite volume would then be lifted
in a random fashion. The information about how this is done lies in the
p{n). A variety of large-N behavior is then possible: x can be the Dirac
measure on a mixture of states, it can be a mixture of Dirac measures on
pure states, it can be a mixture of Dirac measures on mixtures.

The second aspect is that x itself is a random object: In what way
will the behavior of x, depend on the realization? One could be tempted
to expect that, as a generic behavior, k(7)) will converge at (almost) all
fixed # (see [INS3] for a conjecture in that direction for certain systems).
This would be the case if the random objects u, () lost memory very
rapidly along the path N — u (7). In this paper we provide examples where
this is not the case. Nevertheless, the limiting behavior of the empirical
metastate can be described in our examples in two ways: First, it is possible
to give pathwise approximation results, that hold for all typical realizations.
Second, we suggest to study the behavior of the empirical metastate in law.
This idea extends [ APZ] where convergence of the Gibbs measures them-
selves was considered in law. We will see that, in our examples, infinite
volume limits exist in law and give interesting information about the
asymptotic behavior of the system along the path.

In order to make sense out of this, one has to speak about notions of
convergence of x, with N7oo, that is when the system approaches the
thermodynamic limit. As is a common practice, we will choose the weak
topologies that are inherited on the space of states and on the space of
metastates when we choose as a starting point the product topology on the
spin space (see Chapter 2). It makes the two spaces Polish. The physical
content of this notion of convergence is that convergence is checked locally
on all levels.

In the first part of this paper we will outline the general treatment
of random mean field models with quadratic interaction and finite state
space. Then we will consider two representatives of this class in detail. The
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advantage of mean field models is that they allow for explicit expressions
for the weights p7%(n) and good enough approximations (1.1). Our two
examples are:

(i) The Curie Weiss Random Field Ising Model (CWRFIM):

Denote Q:={1, —1}™ the space of Ising spin configurations
o=(0,),.n- We will denote the set of states (which is the set of probability
measures on £2) by 2#(2). Let n=(,),., denote a sequence of iid.
Bernoulli variables taking the values ¢, —¢ with probability 3. For the
inverse temperature f define the Gibbs measures

un(ml(o)i—, _Norm.

.....

exp<£v Y oo+ p Y, 17,0,-) (1.3)

I<ijsN I1<igN

in the finite volume?® The phase diagram of the system is well known (see
[SW], [APZ]). At low temperatures and small ¢ the model is ferromagnetic,
ie. there exist two “pure” phases, a ferromagnetic + phase x*(y) and
a—phase x4 _(n7). We restrict our interest to this region of the phase diagram.

(ii) The Hopfield model with finite number of patterns:

Let © be the space of Ising spins as above. Let {=(&¥),on i ar
denote iid. Bernoulli variables taking the values 1, —1 with probability 1.
&= (&), are the patterns the model is supposed to learn ([Ho]). For
B> 0 define the finite volume Gibbs measures

1
i) dimgomew (5 T % &ges)  (4)

2N 1<i,j<N IgsvsM

Due to our restriction on the number of patterns to remain fixed when
N1 oo, we are deep inside the “region of perfect memory” if f> 1. This
means that, for large N, the system is approximately in a mixture of the M
“Mattis states” x4 (£). The latter is a state, associated to the v-th pattern,
s.t. the overlap vector (1/NYN | &%) »=1..,m 1s centered around +m*a’,
where a’ is the vth unity vector in R, (m* =m*(B) is the solution of the
ordinary Curie Weiss Mean Field equation.) For precise statements, see
e.g. [BGP], [BGl]. For the state of the art in the Hopfield model
with limy, ,, M(N)/N =« small and positive we refer to [BG2] where a
beautiful proof of the validity of the replica symmetric solution is given.
One reason for treating the Hopfield model here is of course, that it can be
viewed as an interpolation between a ferromagnet and a spin glass.

% As usual they can also be viewed as measures on Q by tensoring with arbitrary product
measures for the spins at sites i > N.
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For the limiting distribution of the empirical metastates in these
two models we will prove the following theorems. (For the pathwise
approximation results and related information, see Theorems 1’ and 2').
These show that even in these simple models there is some richness in the
empirical metastate.

Theorem 1. For all bounded continuous functions F: 2(Q)— R
we have the limit in law

. 1 N aw

lim = 3 A, n) = no Fun) +(1=n,) Fuzn)  (15)
i n=1

where n_, is a random variable, independent of # on the r.h.s. distributed

according to

P[noo<x]=%arcsinﬁ (1.6)
T

Thus, the empirical metastate is supported on the two “extremal” Gibbs
measures with random weights.

Let us briefly explain the occurrence of the arcsin-law. It turns out
that, heuristically, we have the approximate extreme decomposition

unmy=pimuim)+(—pyn)u(n) (1.7)

where the weight p i (n) expressing the random symmetry breaking is a
function of the random walk N+ Y V_ 7, of the form

e M=,

+ - 1
PN(’?) eC(ﬂ)ZlNzl’7:+e7((/;)2'N=1'7' ( 8)

with some constant ¢(f) which is positive in the low temperature phase. In
fact, the occurence of 3V, 7, (which follows from a saddle point analysis)
is not surprising given that it is proportional to the energy difference
between the ground state configurations ¢, =1 and ¢; = —1 in a volume of
size N. Now, typically Y~ , n, ~ N> moves on a scale increasing with N
and so, for the empirical metastate, we might even use the approximation
prmy=1sy .o We write

|
nN(”):N # {ISnSN

i ;7,.>0} (1.9)

i=1
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for the fraction of times the random walk spends in the upper half plane.
Then we have, for any continuous function F on () (i.e. an observable
on states),

1
~ 2 Fum)=ny) Fui )+ (1—nyn) Flu(n)  (110)

N l<ag N

This explains the form of the rhs. of (1.5), using the well known
probabilistic fact that n,, converges in law to an arcsine-distributed variable
n., with N1 oo.

Led by Theorem 1 for the CWRFIM one might be tempted to conjec-
ture that the empirical metastate gives mass only to the Mattis-states (one
pattern states). However, the analogue of Theorem 1 is more involved. To
state the theorem let us denote by &/ the M(M —1)/2 dimensional vector
space of M x M symmetric matrices with vanishing diagonal. Denoting by
S ={(p")y=1..m} the simplex of M-dimensional probability vectors let us
define the map p: & — & by

)
o PV

u=1

pi(V):= where  p(V) :=exp(c(B}V?)™) (1.11)

with the constant c(f)=pm*/2(1 —f(1 —m*)?). Let us denote by
W,=(W") <, ,<an @ Brownian motion with values in /. This is just
obtained by M(M —1)/2 independent one dimensional Brownian motions
W for u <v, and setting W := W+ and W% :=0. Then the statement
analogous to Theorem 1 reads

Theorem 2. For all bounded continuous functions F: 2(Q2)+— R
we have the limit in law

lim l
Nt N

N law 1 M Wt
Fl =1 d v v 1.12
L Rue) [Lar( 3 \ﬁ>uw(é)> (112)

n=1

where (W )o<, <1 is a M(M —1)/2-dimensional Brownian motion starting
at the origin, independent of ¢ on the r.hs.

The occurrence of the Brownian motion in Theorem 2 will be
explained by an invariance principle for the underlying disorder variables;
the time ¢ is nothing but the rescaled system size.

Here, in fact, the empirical metastate is richer, in that it is a random
mixture with support on all mixtures of Mattis states. Indeed, for each

fixed ¢, p(W, /\ﬂ) has a probability distribution (which is independent of ¢)
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which gives mass to all possible weights in & (see Chapter 5). Thus the
metastate gives weight to @/l mixtures of states that are not excluded by the
spin-flip symmetry (that holds for all realizations) and not only to the one
pattern states. Note that this behavior is in sharp contrast to the behavior
in the CWRFIM., As it will be explained in more detail in chapter 5 (see
the discussion after (5.5)), the occurence of mixtures can already be expec-
ted from the fact that the energy difference between groundstates for two
different pattern (where the spins take one pattern, or the global flip of it)
stays of order unity when N goes to infinity.

Remark. We see explicitly that, in both cases, the empirical metastate
K v(77) does not converge (see Theorems 1', 2') for a fixed realization. Thus,
having a limit for x,(#) is only possible when it is viewed as a random
variable. This is expressed by the fact that the n., respectively p*( W, /\/;)
are random variables with nondegenerate distributions.

We would like to mention that, apart from the empirical metastate,
there is a second notion of metastates, whose construction is due to [AW].
We will discuss its relation to the former; as we will see, it contains less
information. It will be obtained from the r.h.s. of (1.5) (respectively (1.12))
by integration over n, (resp. W,).

Its precise definition will be given in Chapter 2, where we also state
some straightforward approximation properties that are valid for lattice
systems as well as for mean field systems. We describe the role of sets of
regular realizations of the disorder at a general level here, since dealing
with such sets is typical for disordered systems. In Chapter 3 we introduce
disordered mean field models with quadratic interaction. We give
approximation criteria and describe general features of the behavior
expected in these models. We also discuss the relation between the condi-
tioned and the empirical metastate. In Chapter 4 we consider specifically
the CWRFIM and prove Theorems 1 and 1. In Chapter 5 we consider the
Hopfield model and prove Theorem 2 and 2'.

2. NOTATIONS AND GENERALITIES ABOUT METASTATES

The following considerations are true for general random spin systems
with finite local spin space S. We assume the state space is a countable
product of S over the lattice points, in practice 2 =S or 2=S". Spin
variables will be denoted by o, their projections on finite volumes 4 by o 4;
when necessary to distinguish between spin variables and their values, we
denote the latter by w.

Some topological remarks are in order (see also [AW] appendix,
[NS3], [N], [Se]). Q is equipped with the product topology. We denote
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the space of probability measures on 2 (the set of states) by 2(£). It is
equipped with the weak topology which coincides with the local topology
in our case; that is, convergence of measures is checked on functions that
depend only on finitely many spins. It is metrizable and to be explicit we
choose the metric

dup)=Y 2% Y loy=0,]-wlo,=0,] (21

k=1 (”Ake‘QAk

where A, is an enumeration of all finite subsets of lattice points (See
[Geo], p.60). Given two sequences uy and py, limy;,, d(uy, uv) =0 is
thus equivalent with the condition lim; ., luy[0,=w,] —pylo,=w ]|
=0 for all finite subsets of sites A, for all w , £ ,.

We denote the set of probability measures on () (the set of
metastates) by 2(2(2)). In the same spirit, it will be equipped with its
weak topology, inherited from the topology on #(2) (as in [AW]). Thus
convergence is checked on bounded continuous functions on the states,
which means more concretely that convergence needs to be checked on
functions of the type

Flp) = Fu( /) (1)) (22)

where F: R’ > R is a polynomial, /=1, 2, ... and f,,..., f, are local functions
on 2. The topology can be metrized with the aid of such functions. In the
Ising case one may restrict oneself to functions f; of the form [],., o, with
a finite set of lattice points I. Both spaces #(R2), #(#(£2)) are then com-
pact Polish (i.e. complete, separable, metric) spaces. All spaces we consider
carry automatically the associated Borel g-algebras generated by the open
sets.

Note that, for fixed #, the empirical metastate x(#), as defined in
(1.2) will always possess limit points, due to the compactness of 2(#(Q)).
We remark that the definition of the empirical metastate in (1.2) depends
a priori (and in reality!) on the sequence of volumes A, one is considering.
In mean field models there is the natural choice of volumes 4, ={1,.., n}
that we will stick to. In generalization of the definition (1.2) one could even
want to study the objects | py(dA) J .., With some sequence of measures py
on the set of finite subsets of the lattice, s.t. py({A4})— 0 for all finite 4
with N1 oo. We don’t treat this general case here.

We will generically denote the probability space of the random
variables # describing the quenched disorder by (#,%, P), and expectation
w.r.t P will be denoted by E. We assume that # is a product of a Polish
space over the lattice points. #, too, is equipped with the product
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topology. We can now consider the skew space # x €2 (see [Le], [Se]),
equipped with the product topology.

There is another notion of metastate, introduced by [AW], that we
will refer to as the conditioned metastate. For its introduction it will be
necessary to consider, one level higher, the space # x 2(R2), equipped with
the product topology. Assume that we are given a measurable sequence of
random states uy(n). We will focus on the random elements 4, ,, in
P(P(Q2)) and view these as kernels from # to 2(Q2). Then we consider
the associated probability measures on the space # x 2(Q), given by
E[ G(un(n), n)], for a bounded continuous function G on # x #(Q).

Assume now, that the sequence uy(#) is such that, for any bounded
continuous G, the limits

lim ELG(u(n), )] =: [ K(du, di) Gl ) (23)

exist and define a probability measure Ke 2(P(2)x #). Then, the
conditioned metastate k(n)(du) will be the regular conditional probability
of K given #. It is thus the measurable map K. # — P(P(Q2)) st
jK(d,u, dn) G(u, n) = E{ k(n)(dr) G(u, n)]. Note that the conditional prob-
ability is well defined since J# is Polish.

When dealing with random systems one usually has to exclude excep-
tional sets of the disorder from the analysis. These exceptional sets, which
may depend on the systems size, should be small enough to be ignored for
most purposes. As we will see in our concrete examples this question has
to be handled with care; therefore we would like to state an approximation
lemma, which shows how exceptional sets of realizations affect the above
definitions.

Let us assume that we are given two random sequences u (%), un(7)
of states that become “close” for most 7. We will consider sequences of
“good” sets of realizations #(N)c #; an important role will then be
played by the approximation for all # in the set .# :=lim infy;,, H#(N)=
{neA#, IN,:ne #(N) YN = N,}. This will serve as a relaxation in place
of just saying that convergence takes place for # in a full measure set. Then
we have

Lemma 1. Assume that there exist subsets #, < # s.t., for all
realizations #€liminfy,, #(N) we have limy;. d(uy(n), uy(n))=0.
Then

(i) For peliminfy, , #(N) the sets of weak cluster points coincide

CP(un(n),n=1,2,.)=€P(un(m),n=1,2,.) (24)
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(ii) Forallye#' :={n,limy,, I/NT)_ |1, _ . =0} we have

Al/iTnOlO(KN(”)(F) —xn(n)(F)) =0 (2.5)

for all bounded continuous F on #(Q).

(iii) Assume that limy,, P[#(N)]=1. Then, for any bounded
continuous function G: 2(Q)x # — R

I}IiTrnw(fE[G(ﬂN(n), 1 —ELG(un(n), 1) ])=0 (2.6)
Proof. (i) is obvious. To prove (ii), define

1

sn<N

1
Swimy yeottm (2.7)

For any bounded continuous function u +> F(u) we have

1
5 L (Fle ) = F(m)

1snsN

1
=N X (Flwm) = F(m) 1, opim + R (28)

l<sns N

According to its definition we have on #” that |Ry| < {|F| ., Sy — 0. Since
the first term is a Cesaro sum it suffices to show that

(Flu(m) = Fu, (M) 1y ey = 0 (2.9)

with n1co. But notice that a continuous F is in fact already uniformly
continuous, due to the compactness of Z(2). Therefore (2.9) follows
directly from the assumption, for both cases that # is an element of
lim infy; . #(N) or that it is not.

To prove (iii), we split off the exceptional set #°“(N) to write the Lh.s.
of (2.6) as

ELG(un(m), m)] — ELG(un(n), m)]
=EL(Glun(n), m) — Glun(n), M) Ly c o]+ Ry (2.10)

where |Ry|<2 |G|, P#(N)—0. Now, for fixed #, u+—>G(u,n) is a
uniformly continuous function in x4 (due to compactness). Therefor the
convergence for fixed » of the expression under the expectation follows
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directly from the assumption. Using dominated convergence this proves the
claim. ||

Remark. The set #' is potentially (and sometimes in reality) a bit
bigger than the set lim infy, ,, #(N). Our discussion of the CWRFIM will
provide an example where, for a natural choice of sets #(N), the first is
a full measure set but not the second. Of course, if #(N) can be taken as
a full measure set which is independent of N, we have #(N)=#"' and the
convergence in (ii) takes place a.s.

3. MEAN FIELD MODELS WITH QUADRATIC INTERACTION

In this chapter we discuss the models of the above class. We fix
approximation criteria (see propositions 1, 2) that allow for the computa-
tion of the metastates in terms of the relative weights the “Hubbard-
Stratonovich” measure puts on small balls around its concentration set.
The models we will consider are of the following type. (See also [ BG2],
Chapter 2).

The spins o=(0,);_,,. €R2=S" have an a priori distribution
according to a product measure

wmlo=ol=[]ul®n)lo=w,] (3.1)
i=1

Here we allow the measures x%(n;) to depend on a random variable 7,
ie N; this enables us to include random field type models. These “random
fields” #; shall be sitewise ii.d. Assume that we are given a bounded
continuous map

(o1, 1) —>m(oy, 1) (3.2)

taking values in R™. Then the order parameter mi, is defined by the
empirical average

1 N
(o, 1) =7 Y. mlosn) (33)

We consider the Curie Weiss Hamiltonian given by the square of the
2-Norm of the order parameter

NIZ

N M
Ex(o,n):= _EW’N(U’ ’7)2— Z ~va,n ”2 (34)
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The associated finite volume Gibbs measures are then

exp(—BEn(w, 1))
Norm.

un(mlo=w] = 1mlo=w] (3:5)

We write

An(n)[ -] :=unlriy(o,n)e -] (3.6)

for the associated image measures on the order parameter. Examples for
these models are

(a)The ordinary Curie Weiss Ising ferromagnet: o,€{—1,1},
m(o,,n)=0,, u(n)[o;=+1]=1 for all i. The choice of random
a priori measures according to u,(n,)[o,= +1]=e*/2 cosh(By,)
gives our first example from the introduction, the CWRFIM.

(b)The Curie Weiss g-state Potts model: o,€ {1,...q},(m?(c,, 1)) ,=1, 4
=(lal=p)p=l,...,q'

(c)The Hopfield model: o, € {—1, 1} with symmetric Bernoulli a priori
measures. For traditional reasons we call the random variables in this
case ¢ instead of 1. (%),21 5 . z1. .. e =(&)izy 2, are iid. (for dif-
ferent i, 4) with P[£#= 4+1]=1. The order parameter is defined by
m(a,,&)=0a,& €{l, —1}™. The empirical mean (0o, £) is then
called the overlap vector.

Our restriction to quadratic Hamiltonians is convenient because it
makes it possible to use the well known trick of the Hubbard-Stratonovich
transformation. Let us recall it here for convenience of the reader and
to fix notations: One introduces an auxiliary M-dimensional Gaussian
integral to write for fixed o =(w,, .oy)€2; N

2

dm exp(— pvm +/3Nm'ffl;v(w,f7)>ﬂ?v(f7)[0=w]

Norm.

R

m? 1

1
b v—" fRM dm exp {—ﬁN {T_EN

xlog (f Holn)(do') exp(fNm -1ii (0", ’”’)] }

exp(BNm - my(w, 17))
§ 1o(n)(do’) exp(BNm - Hin(a', 1))

u(mle=w] (37)
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Now, for fixed m, the second line of the r.h.s. constitutes a probability
measure for the variable o. The variable m is integrated with respect to the
measure that can be read off from the first line of the r.h.s.

Thus one has the following “factorization formula” that will be the
starting point for our analysis

uxmla=ol=]  fxn)(dm) uhim, n)o=w] (38)

Here u%(t,7)[6=w] is a product measure over independent spins
obtained by “tilting with the external field” ¢; that is

unt,mMlo=wl=T] #t n)lo;=w,] (39)

i=1

where

o exp(ft-m(w, 1))
'u?(t, n)lo=w;]= exp(BL(t, 1))

with the associated logarithmic moment generating function

wm)lo=w]  (3.10)

1
L(t, )= g log | 4(n)(da) exp(pt-m(a, n) (3.11)

We will write u° (¢, %) for the infinite product measure. The “Hubbard-
Stratonovich measures” ji,(n) are given by

N __exp(—=fNDy(m, n)) dm
Anln)(dm) =T dm exp(— IND(nt 1) (3.12)

with the function

S
y(mn):="—5 T Limn) (3.13)

N I<i<N

{dm means of course integration w.r.t. Lebesgue measure.) Note that jiy(#n)
is nothing but the convolution of zy(») with a M-dimensional Gaussian
Normal variable with covariance matrix ¢°1 = (1/AN) 1.

It is essential about mean field models that the measures fi,(#) (and
the related 7,(7)) have exponential concentration properties when N1 co.
The following results, reducing the question of the structure of the phase

822/88/5-6-18
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diagram to averaged quantities, are known applications of large deviation
techniques ([ DS], [DZ], [ El]). Define

L*(m) :=inf(¢-m—EL(t, 7,)) (3.14)

and
mz mr2
I{m) :=7+L*(m)—in,f<7+L*(m’)> {3.15)

Then there exists a full measure set of #”s s.t. (a) the measures f,(5) obey
a large deviation principle with the deterministic rate function I(m). (b)
Any weak limit point of u (7} is of the form

[ ptam) (. ) (3.16)

where

M= {m, [(m)=0} = {m, E[@n(m,7)] =min E[ @ (', nl}  (3.17)

is the concentration set of the measure Z,(r). For a proof (also of the right
inequality in (3.17)) see Theorem 5 in [Co] (for the case of nonrandom
a priori measures). (3.16) shows that the role of pure infinite volume states
is played by the product measures u° (m, n) for m in the set .#. .# should
be thought of the set of values m the order parameters takes in the different
“pure phases.”* Now, for our study, we have to describe in more precision
the finite volume version of (3.16) in which the random competition among
the elements in the set .# manifests itself. For that purpose we need the
relative weights that are put by the measure /i, (the finite volume version
of the measure p(dm) in (3.16)) close to an me M. Thus we have to go
beyond the large deviations on the volume order; we have to look at a
scale where the random fluctuations become important.

Let us assume that .# < R™ is a finite set. In fact, we want to replace
(3.16) by

un(m= Y, prn) ui(m,n) (3.18)

In view of the factorization formula (3.8) we look at the probability vector
on(n) :=(p%(n)),,c » as an approximation of the Hubbard-Stratonovich

* Typically, by adding “magnetic field terms” to the Hamiltonian, one can select one of these
to survive as a limit point of the modified z,{%).
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measure (7). Since this approximation shall be sufficient for the
metastates, we are looking for natural conditions that imply the assump-
tion of Lemma 1. Denote by B,(m) the Euclidian ball centered at m with
radius p. Let us thus make the following

Definition 1. Assume that we are given subsets #(N)c #. We
use the abbreviation # :=Ilim infy, . #(N). We say that dy(n) becomes
close to the probability vector (p74(n)),,. , along the regular sets #(N) (in
short: they have the property CR(py)) if, for all ne S, for all me 4,

llm 0 (An(m)[ B, (m)] = pr(n) = (3.19)

for a decreasing sequence of radii p, | 0. If (3.19) is true for all sufficiently
small p (independent of N), we say that they have the property CR(p).

The reason for this definition is that we have

Lemma 2. Assume property CR(py) and define ui(zn):=
Y e.n P 2 (m, ). Then, for all net we have limy,,, duy(n),

#n(n)) =0.

Remark. From the fact that (p%(#)),,. , 18 a probability vector
follows in particular that, for all n e #.

tim 00| (U B ) | =0 (320)

me . H

which is just the usual definition of .# being the cluster set of i (#n) (see
[LPS]).

Remark. Note that CR{py) for some unspecified p, is implied by
CR(p). (Put ayy = jn(n)[ B, ,(m)]— p(n), for some decreasing sequence
px 10, and use the elementary fact: For each double sequence a,, s.t.
limy,,, ayxk=0 for fixed K one may find a subsequence KyToo st

limNT 0 aNKN = 0.)

Remark. The property CR(p) is equivalent to the property CR(p),
by which we understand, that in the above definition the measures fiy(#)
are replaced with the measures on the order parameter, iy(n). To see this,
note that from their relation as convolutions follows that, for me .#,

A LB, ()] <A By ]+ | |2l 50| G20
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with a standard normal variable G. From that we have, for n € #.

Al,iTH:O(ﬁN(ﬂ)[B,J(m)] —pN(n) < Al]iTr{‘lo(/iN(ﬂ)[sz(m)] —pnm)  (322)

Similarly we can obtain the lower bound
Alligoﬁzv(n)[Bp(m)] —pn)= ]}]igo(ﬁzv(ﬂ)[Bp/z(m)] —p%(m)  (3.23)

which proves the claim. [I
We come to the

Proof of Lemma 2. Take ne #. We only have to check convergence
on a local event of the form 4 := {5 ,=w ,} with fixed @ ,. Then, using the
factorization formula (3.8), we have

unmIA1= . puln) S (m, ) 4] (

me . #H

<] (U B, m) |

me M

+ 2

me . #H

Al o, AT = RO 4 0, A ‘

(3.24)

B, (

where the first term on the r.h.s. vanishes under the N-limit (see first
remark). We pick one m in the sum and write

JB )ﬂw(ﬂ)(drﬁ) oo, mLAY —pi(n) po(m, m)[A] ‘

N

<[, AR 145, 0n, AT = %, 0m ) AT

BI’N(m

+1@n(m)[ B, (m)] = p(m)| po(m,m[A] (3.25)
The first term goes to zero with p, | 0, due to the continuity of the function
A il (i, ) [ 4] (3.26)

(In fact, it is € everywhere; all derivatives exist for all 71e R", due to the
assumed boundedness of the order parameter.) The second term goes to
zero according to the assumption {3.19). |
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Putting the pieces from the Lemmata 1 and 2 together, we
immediately obtain the following approximation result that we fix as

Proposition 1. Suppose that we are given a quadratic random
mean field model of the above type whose Hubbard-Stratonovich measures
fin(n) obey the approximation property CR(p,) with probability vector

(P¥(M),ne - Then
(i) For all n e 2 we have for the set of weak cluster points in 2(Q2)

EP(un(n), N=1, 2,---)=‘5?< Y PR puo(m,n), N=1, 2) (327)

me.#

(i) Define the metastate

N

N 1
KN(”):=N Z 5Zmeﬂp'ﬁ(n)ﬂ(;(m,'7) (3‘28)
n=1

Then, for all e #' = {n, limy, ., 1/NT_, 1, =0} we have

lim ( [ entn)die) ) = [ R (n)(d) F(ﬂ)) =0 (329)

for all bounded continuous F on #(Q).

(i) Assume that limy,, P[#(N)] =1 Then, for any bounded
continuous function G: 2(Q2) x # — R

lim (£ 1 ~E | 6( T prmutimm.n)|)=0 G30)

me . H

Remark. Again a word of care about the difference of # and #":
The CWRFIM will give an example where, due to this difference, the set
of cluster points becomes a.s. larger than the set of measures the metastate
will be asymptotically supported by (See Chapter 4, Theorem 1').

Let us exploit another piece of information that we expect to hold in
these models. Note that, for fixed volume, the weights in the approximate
extremal decomposition are symmetric functions w.r.t to permutation of
the sites in this volume of the underlying random variables. (Take as a
simple example the weight (1.8) for the CWRFIM where only the sum of
random fields in the finite volume enters.) Thus, for typical fixed realiza-
tions in the infinite volume, the weights should behave asymptotically (as
a function of N, for large N) in the same way if the realizations of random
variables in a fixed finite volume are changed. A precise version of this
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property is formulated below in (3.31). It will be easy to verify in our
examples, but we refrain from a general investigation here. So, let us take
this property as an assumption and look for the consequence on the
distribution of x (7). But then, due to the fact that we check convergence
of kn(n)(F) with local F's, the weights should become asymptotically
independent from the random variables the function F feels if N gets large.

To state this phenomenon precisely, let us use the notation |p — p’| for
two weights p, p’, viewed as elements in R¥, for any norm on R*. Due to
the finiteness of M, the choice of the norm doesn’t matter; if we allowed M
to increase with N, this would become an important point. Then we have
for the distribution of the empirical and for the conditioned metastate

Proposition 2. Suppose, in addition to the assumption of Proposi-
tion 1, that for all ne #, for all finite V< N,

im sup [|pn(n) —pn(n+7,) =0 (3.31)
Ntoo #y

where 7, is a local perturbation in the finite volume V s.t. 4, 47, lies in
the support of the distribution P. Let #' denote a copy of disorder
variables, independent of .

(i) If P[#"] =1, we have for the empirical metastate
lim [ xv(n)(due) Fia)
NTw

1 N
= tim ¥ F( T ponutim ») (332)

me . H

for all bounded continuous F on 2(2), whenever the limit on the r.hs.
exists.

(i) If limy,,, P[A#(N)]=1, we have for the conditioned metastate

J o) £ = tim [ Pl F( 3 px)asonm) (333

me H

for all bounded continuous F on (L), whenever the limit on the rhs.
exists.

Proof. We may restrict to local functions F of the form (2.2). To
prove (i) it suffices to show that, given F, there exist versions #,, #,, of
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disorder variables, mutually independent, s.t. for all # € # we have the
pointwise limit

im (F( 3 ptnusmon) )= F( T prn)uiom 7))=0 (334

ntoo me.H me .M

But note that such a function can be written in the form

F( %, ot atmn))

me. H

=F<< Y pr(n) o (m, '7)(fj)>j=1,,__, z>

me.#H

=: F(p,(n),n,) (3.35)

Due to the x° (m, n) being product measures with local dependence on the
randomness, the #-dependence of F other than through p,(#) itself remains
local; the finite support J of #; depends of course on the special choice of
the functions f;.

Now, define the variable #, to coincide with # on J¢ and to coincide
with an independent copy on J. Define #, to coincide with # on J and to
coincide with an independent copy on J. Since F is a uniformly continuous
function on the compact space of probability vectors (3.34) follows from
the assumption (3.31).

The same type of argument proves (ii). ||

Let us comment on the relations between the various objects we have
obtained and the picture that arises from the above propositions, assuming
the approximation properties (3.19) and (3.31). The full information on the
level of metastates is contained in the object £,{(#x) (3.28). It is supported
on the infinite volume Gibbs states and contains the asymptotic form of
the weights in the extremal decomposition. The weights will depend on
the overall information of the random variables; therefore they will be
asymptotically independent from the variables in a fixed finite volume. But,
a local observable feels the underlying randomness only locally. Thus, for
the limit of the distribution of the empirical metastate, the weights can be
replaced with an independent copy, giving rise to an “additional random-
ness.” The limiting distribution of £,(#n) contains information about the
asymptotic behavior along a path N g (7). On the other hand, the con-
ditioned metastate contains no path properties at all: The weights, replaced
with independent copies with the same distribution are integrated out. In
that case, the whole size dependence is averaged “over infinity.” Its inter-
pretation, suggested by the asymptotic independence, is then: Having no
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particular knowledge of the given realization of the disorder globally, the
conditioned metastate gives the weights with one expects to find a specific
mixture of states. This same metastate could be constructed by “thinning
out” the sequence of volumes which occur in the empirical metastate in a
nonrandom way, as has been shown for lattice systems in [ N].

4. THE CURIE-WEISS RANDOM FIELD ISING MODEL IN THE
2 PHASE REGION

In this chapter we prove Theorem 1 for our first example, the
CWRFIM, and the fixed realization results of Theorem 1'. By this we
provide an easy example of the mean field picture of the last chapter. We
will also see in this example that the set of fixed realization cluster points
can be strictly larger, almost surely, than the support of all the metastates.

In the CWRFIM the logarithmic moment generating function of the
order parameter (3.11) becomes

1
B

Due to our assumption that #,= +¢ takes only two values it can be written
in the form

L(t, ;) = log cosh(B(z +1,)) (4.1)

Lit,n) =L ()+L ()™ (4.2)
where

L_(1) :=L (log cosh{f(t + ¢)) + log cosh(f(t —¢)))

2
g (4.3)
L_(1):= %), (log cosh{B(t + ¢)) —log cosh(f(t —¢)))
Thus the function @ ,(m, #) becomes
2
Byim )=~ L m)—L_(m) 22 (44)

where the dependence on the randomness is only through the random walk

1<isn

(4.5)
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This will make the analysis particularly easy, in that it reduces questions
on the metastates to questions about the walk W,.

As said before in Chapter 3, the structure of the phase diagram is
determined by the averaged function @%(m)=m?/2— L (m) which has
been analyzed in detail (see [SW], [APZ]): For “large magnetic fields”
¢>1, it has only one global quadratic minimum at m=0. For 0<e<}
there exists a critical inverse temperature f (&) s.t. for f> f,(¢) the system
has two symmetric global quadratic minima at positions +m* = +m*(f, ¢);
for f<f (¢} the system has one global quadratic minimum at m =0. We
assume for the rest of this chapter that we are in this two phase region.’

Recall the notations from the introduction (1.7)—(1.9). Define
ui(n):=u° (£m*, n). Then, in fact, (1.7) follows if we just approximate
the integral over m in the definition of i, (#) by two delta functions at
+m* with weights determined by the values of @ ,( +m*, ). This gives the
value of the constant ¢(f)=pL_(m*). Denote, following the notation of
the last chapter,

Kn(n) :=np(n) 5;1+(;7)+(1 *nN(”))éu‘(ry) (4.6)
Then the precise results are given by Theorem | and
Theorem 1'.

(i} For all # in a full measure set, the set of weak cluster points
equals

EP{unn), N=1,2,.}

1
={qﬂ+(n)+(1—q>u'(n), == 1+ exp(~2e(f) 2,
zeZu{—{—oo}u{—oo}} (4.7)

(ii) For all # in a full measure set, for any continuous function
F: 2(2)— R the empirical metastate is approximated by

tim ([ eat(a) Pl — [ Ru(nd) ) =0 (48)

5 At the phase transition line itself there exist two regions: For small ¢ there is a unique global
quartic minimum at m =0, as for the usual CW ferromagnet; for large ¢ there are three
global quadratic minima. These two line segments are separated by a tricritical point, where
there is one global sixth order minimum.
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(iii) For all # in a full measure set the conditioned metastate exists
and equals

’5(’7)= %5/1*('7)4_%5#'('7) (49)

Remark. Note explicitly, that the conditioned metastate contains
only the equal weight distribution on {—3%, 1}, which is obtained by
averaging over the variable n_, of Theorem 1. The information it contains
is thus that, for large N, the system will be in one of the pure phases, which
one changes randomly for different volumes.

The set of cluster points has also been found by [ APZ]. We would
like to point our here that, a.s, it is strictly bigger than the support of the
metastates. The special structure is of course due to the discrete nature of
the distribution of the random fields; if their distribution were continuous,
we would expect to get in fact all mixtures.

The proof is of course an application of the general propositions 1 and
2 plus the model dependent estimates of the Laplace asymptotics for the
measure f(#). To this end we will now introduce two sorts of “regular
sets” of realizations of the disorder. One is

H(N) = {n: |Wy ()| <N+ (4.10)
with some 0 < d <3. We consider balls around the minima +m* with radii
pyi=N"1A+P2 (4.11)

Then an estimation of the occurring integrals gives

Proposition 3. There exists a nonrandom N, = Ny(f, ¢) s.t. for all
N = N, for all ne #(N)

An[B, (m*)U B, (—m*)]12>1—exp(—const(f, &) N'2*%) (4.12)
and

ANLB, (m*)]

og ———————2¢(f) Wy|<Const(B,e) N~ '/4+92  (4.13)
ANLB,(—m*)] N
Remark. The proposition shows that outside exceptional sets one has
a fairly explicit control about the cluster properties of ji,(#), including
the relative weights. We only remark that it is easy to see that the same
bounds hold for the measure s, (with possibly worse values for const(f, ¢)
and Ny).
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We will postpone the proof to the end of this chapter.
Let us also introduce the smaller regular sets s4(N) by imposing as a
second condition that the | W, (#)| be not too small:

H(N) = {: | Wa(m)| SN2 and |Wy(n)| = N°) (4.14)

for 0 <J < 1. Denote, following our usual notation,

' « 1 -
%1’2 = { lim N ngl lﬂe(#i,z(n)"zo}

NTe (4.15)
#\ , :=liminf ] ,(N)
NtToo
Then we have
Lemma 3.
(i) PL#3]1=1P[#]=0
(i) P[A\]=P[A£]=1
Proof. To prove the first claim in (i} we must show that
1
Syi=—= Y ly.5-0 (4.16)
N l<ng N 5 g

as. where B,={xeR: |x|=N"*97 or |x| <N°}. Sy is nothing but the
mean time of the walk spent in the “bad regions” B,.

Note that S, <2Sy.1 for 2<n <25+, Therefor it suffices to show
that S — 0 a.s. with k1 co. By Borel-Cantelli it suffices to show that, for
any (rational) ¢,

f P[Sy>e] < oo (4.17)
k=1

But this follows simply from the Chebycheff inequality since

ES 1 Const
P[SN>8]<—8A’=__ Y P[W,eB,]l< ons

EN Il<n<N

N7 (48)

where we have used that, by standard estimates, P[W,eB,]<
Const(N—l/2+5 + g —const N”)'

The second claim in (i) follows from the recurrence of the random
walk. (ii) follows from the law of iterated logarithm.
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(i) shows that we really need to distinguish between the sets )
and #,. With these preparations we come to the

Proof of Theorem 1 and 7. It is easy to check that from the
estimates in proposition 3 follows property CR(p,) along the sets J#(N)
with the weights defined by (1.8). To show Theorem 1'(i), we note that it
follows from proposition 1(ii) that the cluster points are described in terms
of the cluster points of the weights (1.8}, for all # in the full measure set .
But, due to the recurrence of the walk, these are of the form as in written
in (4.7), as.

To prove the rest of the statements, we use the different, “trivial”
weights

PR (m=1 Wy >0

. (4.19)
py" (1) =1 Wy<0

For Theorem 1'(ii), note that from proposition 3 also follows property
CR(p ) along the smaller sets #5(N) for the weights (4.19). This is a simple
consequence of the imposed minimum size of |W,|. Thus, Theorem 1'(ii)
follows from proposition 1(ii) with the full measure set 5.

To prove Theorem 1'(iii) and Theorem 1 note that we have for y € #5,
because of the minimum size of | W |,

lim sup (g~ , o o—1sN 45 ,550=0 (4.20)
Ntoc  fy
Note further, that lim,; . P[#(N)] =1 (as has been seen in the proof of
Lemma 3). Thus, Theorem 1'(ii1) follows from proposition 2(ii).
To obtain Theorem 1, remark that, according to proposition 2(i), the
distributional limit is given by the expression

. 1 N law .
Allenolo ¥ 2 Flun) = AlllTngc(nNF(ﬂ;(77))+(1—nfv) Fu (m)) (421)

where now n, are random variables with distribution as in (1.9), but inde-
pendent of #. Now, it is a well known result from elementary fluctuation
theory (see e.g. [ Fel) that the n, converge in distribution to a variable n,
which is distributed according to the arcsin-law (1.6). (And rot to the equi-
distribution on {3, —1}!) This concludes the proof.

Let us finally give the proof of Proposition 3. The type of estimates
used here are standard; we apply parts of what was used in [BG1] in a far
more complicated situation. However, we include these computations here
since they are prototypical for random mean field models.
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Thus, let m* >0 be the largest solution of the mean field equation
m=L' (m). We define R, :=(B,(m*)uB,(—m*)). We will have to
estimate the corresponding integrals

P

1Fi=[  dmexp(—fN(®y(m) — °(m*))
K (4.22)

P

J = fR dm exp(— BN(D y(m) — ®(m*)))

»

where we have dropped the # in our notation. To prove the proposition we
show that there exist Ny = Ny(B, ¢) and const(B, £) >0 s.t. for all N> N,
and for all #e #(N)

J
5 <exp(—const(f, &) N'2+9) (4.23)
PN
and
I*
—I% exp( F2BL _(m*) W)= 1— const(B, &) N~ 1/4+72 (4.24)
PN

Before we start, we remark for later use that the higher derivatives of L .
vanish at infinity:

. 2 \*
i (o) 2oom[=0 k22
(4.25)
a k
lim <—> LA(m)'=0, k>1
|Too om

and are therefore uniformly bounded. We write m= +m* + v and treat
the two cases + at the same time. Then we have for |v| <p, using the
symmetry properties of the functions and of their derivatives,

|24
Pn(Lm* +0) — PU(m*) iTNLJm*)

_ P m*+b0) , Wy
2 N

Wyl (+m*+60) ,

- : (4.26)

L (m*)v—
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with some 0< 6, # <1. Thus, on |v| < p,

w b
¢N(im*+v)—d5°(m*)—_|»-—N—NL4(m*)<—5tvz——zv
with
w
z:=TNL’,(m*)
and
. . 0” * WN " *
b, :=b,(p):= sup " (m*+v)+ | sup |L" (m* + v)]
v, |v|<p v, |v| <p

Similarly we have
0 Wy
Dp(Em* +0v)— P°(m*) L (m*)=
with

sup |L" (m* +v)]

v, lv]<p v, o] <p

b_:=b_(p):= inf (150"(m*+u)—‘%/v—]\—’

Kilske

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

Lemma 4. Denote P(x)=P[G>x] for a standard Normal G. If

ae[—7,7],7>0

J e=vrax L _ iRy a) 4 P(—y—a)) <o PR pe R
x| = 2

T

Proof. From the well known estimate P(x) <exp(—x?/2).

This gives, for p =4 |z|/b .,

| 2xm ) '
e”ﬁN“”+/2"’2*Z"’dv<2 e ~PNUbL L /2) PP~ 1zl p)
JIVI zp ﬁNb+
2
< 87 exp<—ﬁNb+p>
VBNb,

4

(4.32)

(4.33)
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With

2n zzﬂN
—BN({(b_/2) * — zv) dy = 4
‘[IR ¢ 0 BNb exp < 2b, > (4.34)

we obtain from this

I > exp(+SL_(m*) W) ﬂ]f;l: <exp <2221’fN> —2exp (— B—Nl%fj))
(4.35)

For the upper bound we simply write

I3 <exp(£BL_(m*) W) [ e=Mis-e -2 gy
R

2 2
—exp(£BL () W) [7oexp (szj_v ) (4.36)

Next we estimate the integral over the outer region. We use the following
rough estimate.

Lemma 5. For each ¢ f in the two phase region there exists a
constant &(f, ¢) s.t. for all v > —m*

D (m* +v) — D% (m*) = &(B, &) v* 437)
sup |[L_(m)| =:cy(B,e)< 0

meR

Proof. The first claim states that @° is bounded below by a parabola
on R . It can be chosen to coincide with @ at the points m=0 and m*
(where the absolute minimum is attained.) The proof is elementary. To
prove the second claim it suffices to verify that lim,,_ , . |L_(m)| <o
which is again elementary.

From this we have
= dmexp(—BN(@x(m) - @°(m*))
<2exp(calf, ) W) | do exp(—pNe(p, ) 0

<2exp(cA B, &) IWy| — BNE(B, ¢) p?) (4.38)
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Thus, on #(N),
J, < Const exp(Const(f, e) N+ — const(B, &) N'> %) (4.39)

The choice of p, was made to make the last estimate hold.
Since @° has bounded third derivatives we have further

| sup @Y (+m*+v)— D" (m*)| < Const(B, &) p (4.40)

v ol <p

Thus, on H#(N),
b, (pn)— @Y (m*)| < Const(, &) N~'/4+27 (4.41)
We have from these estimates
J o
I—piN < Const' exp(Const'(B, &) N +272 —const(B, e) N'*T°)  (4.42)
PN
and
Ii
FLexp(F2BL_(m*) Wy)
PN

b+(pN) _ 2
__—(1 _2e /iNb+(/7N)PN/4)
b_(pn)

>1—const(B, &) py=1—const(B, ) N~ '/4+o2 (4.43)

=

from which the claim follows for large enough N. ||

5. THE HOPFIELD MODEL BELOW THE CRITICAL
TEMPERATURE

The Jogarithmic moment generating function of the order parameter is

L(t, &) =% log cosh(fi - &) (5.1)

The structure of the phase diagram is determined by the averaged function
@O (m)=m?*2—EL(m, ¢,). For f>1 there exist precisely 2M global
minima at positions sm*a’, s= +1, " being the vth unity vector of R™.
These are solutions of the averaged mean field equation

E[¢; tanh(m - &) =m (5.2)
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m* is the largest solution of the ordinary Curie Weiss equation
m =tanh mf. The M symmetric mixtures of the above product measures

1 (&) 1= 3 (uo(m*a’, &) + uS (—m*a’, £)) (5.3)
are called “Mattis states.” They always come in pairs due to the + sym-
metry of the model. For more precise information on the Hopfield model,
also in the case where the number of patterns is allowed to go to infinity,
see [BGP], [BG1], [BG2].

An important role will be played now by the M x M matrix by(¢),
defined by

GEESWELELY (54)

b, is symmetric and has vanishing diagonal; note that different elements
are uncorrelated (unless prescribed by symmetry) but not independent. b,
will describe the random symmetry breaking between the Mattis states in
finite volume. Thus, the role that has been played by the random walk
N W, in the CWRFIM will now be played by the multidimensional
random walk N — b,,.

To explain the asymptotic form of the weights in the extremal decom-
position recall the definitions before Theorem 2 from the introduction.
Then we have the approximate formula

uv(® = Y pNTE) k(&) (5.5)

1<vgs M

where the map p: o — % was defined in (1.11). Note that (not only M =1
but also) M =2 is a trivial case: For M =2 we have p"(V)=p (V) =1
for all Ve .o/. Nontrivial size dependence in the Hopfield model occurs only
if M>3.

We remark that the occurrence of the matrix N '2b,(¢) in the
weights can be easily understood: In fact, its diagonal elements describe the
energy difference between the M pairs of groundstates o= +&#, since

E (o =¢# &) =1/2N(b3(£))* + N/2. For finite temperature the formula
(5.5) can then be understood if one performs a perturbational calculation
for the depth of the minima of the random function m > @, (m, &), thereby
considering the deviation from its mean value as a perturbation. Precise
estimates (analogues of proposition 3 for the CWRFIM) that allow for the
application of proposition 1 and 2 have in fact been done in a different
context, so that we need not repeat their proofs here; they can be readily

822/88/5-6-19
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read off from [Gen], where central limit behavior for the measures s,
around the randomly shifted minima of the function @ ,(m, &) was proved.

It is important to note that, while in the CWRFIM the arguments in
the exponents of the weights were moving on a scale ~N'?2, now the
normalization of the central limit theorem is taken. This was the reason for
favoring the extremal states in the first case. In the Hopfield model, the
weights will remain spread over all mixtures when N1 co.

To state the results precisely we introduce the following objects.
Following old notations we set

N

~ 1
Kn(&) =¥ Y OsM b (S ) (5.6)
n=1

It is possible to get an even nicer form: We find it instructive to introduce
also a metastate that differs from the above by strong approximation of
by(&) by a Gaussian process of particularly simple form. To do so, we
apply the powerful strong invariance principle for partial sum processes for
R*-valued independent random variables, whose proof can be found in a
general context in [Rio]. It states that a sequence of Gaussian random
variables can be constructed on a common probability space having the
same k x k covariance matrix that approximates the partial sum process for
a.e. realization.

In our case, from [Rio], p.1712, Cor. 4 follows that there exist
onedimensional random variables y*" =y for v#yu, y*“ =0, on a common
probability space with & s.t.

(1) Y= <uwvermn—1,2,. are iid. Normal Gaussians (for dif-
ferent {4, v} and n)

(i)

sup |65 — gl = O(log N) (5.7)

N=12,.

a.s., where
N
gv =2 " (5.8)

n=1

Then we put

., 1 &
KN(%C)1=N Y O, peni/m i) (59)
n=1
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Remnark. Note that the matrix elements of g, have the advantage not
only of being Gaussian but also independent (unless prescribed by the sym-
metry of the matrix) which was not true for the matrices b,. Thus, they
form a M(M —1)/2 dimensional random walk with Standard Gaussian
increments.

With these definitions, the analogues of Theorems 1, 1’ are Theorem 2
and Theorem 2'.

(1) For all ¢ in a full measure set, the set of weak cluster points
equals

‘gg’{ﬂzv(é),N=1,2,~-}={ Y u(8),(g)an,, MG«V'} (5.10)

I<vsM

where &' ={(},3)} for M=2 and &' =¥ for M >3

(ii) For all ¢ in a full measure set, for any continuous function
F: ?(2)— R the empirical metastate is approximated by

fim < [EXGCOLMEENGTEN F(u)> =0 (5.11)
NTw

(iii) A.s., for any continuous function F:2(Q)+— R the empirical
metastate is approximated by

tim ([ &) F) = [ R0 e ) ) =0 (512

(iv) For all ¢ in a full measure set the conditioned metastate exists
and equals

f(é)(F>=EgF( » p”(g)u:o(f)> (5.13)

where g is a Normal Gaussian in /.

In the course of the proof we will have to compare the map p(V) at
different arguments in the noncompact space /. To be able to do so, we
need some information about the continuity of ¥V'— p(¥'). We have

Lemma 6. Define the norm

14 7=sup X2 (5.14)
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Then
12(V)—p(V) 1 S4BV + 1V =Vl ) IV =V, (5.15)

Proof. Writing V.=V, we view p(V) as a function of the
M(M —1)/2 variables V*# for « < . Then the Taylor formula gives

v

S5 (VYV' V) (5.16)

pPVY—p(V)y=Y

a<fi

where V=V +6(V' — V). It is easy to compute that

a ,. 0log p" ol ., 0log p”
Gy =P (1 =P") = (p") ﬁ”,,,pz¢vp Sy (5.17)
Now
0 log p?
anon =25, +0,,) (5.18)
where we write ¢ = ¢(f). Therefore
14
z a%/ga%(r/)(V’ —WV)E=2c((V—V"))* (5.19)
a<fl

Then

lp*(V')—p"(V)|

~ 1 ~
=2 | U= P = V) = (0 5 5 BV
1 -
<2 (pU=p)+ (75 T 5 )suplFV— V)
=4ep*(1—p") sup [(V(V = V")) (5.20)

where all p, s are taken at the argument 7.
Note that

sup [PV =V IP IV =V
<Vl + 1V =PI ) V=Vl (521)

Summing over v gives the lemma. [
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Finally we come to the

Proof of Theorem 2 and 2'. From [Gen], proposition 1.3.
immediately follows that for any 0 <5 <31, p<m*/2, s= +1,

bN(é)> iy
(1+0(N"°))
( /N

5
gﬁ (f’)(lwuv )

An(E[ B, (sm*a”)] = (5.22)

O(N~°) is here nonuniform in &.°
We have to use information on the minimum and maximum size of
f)/\/]_\’_ . In fact, from the Law of Iterated Logarithm for partial sums of
Rf-valued random variables (see for this statement, which is true more
generally in Banach spaces, e.g. [LT], Theorem 8.2) we have

b
} %” < Const \/Inln N (5.23)
as. for Nz Ny(¢) sufficiently large (with some arbitrary matrix norm.) This
gives

p <bN(é)> <(In N)¥ (5.24)

JN

with some constants K= K(f), for N sufficiently large.
It is easy to see with this information that from (5.22) follows that

o <bN(é ))
P’
/N
M
[ ON(E )>
7 < JN
This, in the language of Chapter 3, is property CR(p) along a sequence of
N-independent exceptional sets #(N)=#" for the fixed full measure set
' where the assumptions necessary for the above estimates hold. Now we

apply our general reasoning. From the third remark after Lemma 2 in
Chapter 3 follows that this implies CR{p) for . (In fact, technically, it is

}zi?l\ An(E)[B,(sm*a")] — =0 (5.25)

S It means precisely that for a.c. é.there exist No(&) and Const(&), s.t. for all N = Ny(¢) the
term is bounded by Const(&) N~°.
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typically proven before!) Due to the second remark after Lemma 2 we have
then CR(p,) which suffices for all our needs. Note further, that because of
the N-independence of #(N)= "' we don’t have to worry about excep-
tional sets any more when applying any of the propositions 1 or 2.

Thus, Theorem 2'(ii) follows from proposition 1(ii).

Theorem 2'(iii) follows from proposition 1(ii) and the following
fact: Property CR(p) with the probability vector p(b N/\/]V ) implies the
property CR(p) with the probability vector p(g N/\/]V ). To show the latter
it suffices to show that, a.s.

. b gN)
1 —_——p| 2= = 5.26
sim P(ﬁ) P(ﬁ Y (26)
But Lemma 6 implies
p( %) (2)
PN Pl
4
< (bt by —gnl) loy—gnl  (527)

Using now the law of iterated logarithm (5.23) and the strong approxima-
tion property (5.7) for |by— gnl,, the desired estimate (5.26) follows.

To prove Theorem 2'(iv) and Theorem 2, let us first note the finite
volume perturbation property, necessary for Proposition 2: It is clear that,
for fixed finite volume ¥, sup; [bn(E) —b (€ + &) < Const(V). Then, we
have from Lemma 6

. @) [balE+E)
im s | o (22 - (22|
<2 (1b,(&)) o+ Comst(V)) Const(V) (5:28)

Using (5.23) the r.hs. goes to zero for almost all #.

Let us now denote by &' an independent copy of . Note that we have
the two approximation properties given by proposition 2(i) and (ii). Then
we construct, as above, a strongly approximating process g', but this time
for &, such that it is independent of &. It follows that

F<§1 pv<bj;/(§)> v (5) (Z P <5’;’7>/¢ (é)) (5.29)
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a.s., for bounded continuous F, with N1 co. Putting this together with
Proposition 2(ii), we obtain directly Theorem 2'(iv). For Theorem 2 we get
from Proposition 2(i)

lim [ ry(&)d) ) lim Z F( ( f)u (f)) (530)

Since we are only interested in distributions, we replace g,/ \/_ by W, /\/_
with ¢, =n/N where W, is a Brownian motion. But then (5.30) is nothlng
but a Riemann sum for the continuous function ¢+ F(p*(W, /\/_ Hu ().
Thus it converges for almost all realizations of W, to the corresponding
integral with N1 co. But, from this follows that the distribution of (5.30) is
the same as that of (1.12) which proves Theorem 2.

To prove the result about the cluster points, Theorem 1'(i), it suffices
to consider the cluster points of the weights p(b N/\/N ), N=1,2,.. Now
we use the following

Lemma 7. Let X,, i=1,2,. be a sequence of iid. k-dimensional
Normal Gaussians. Then, a.s., the set of the cluster points of the sequence
l/\/]V >N . X, N=1,2,. equals all of R*.

The proof is not difficult: Given a neighborhood of a rational point in
R it is easy to construct a sparse subsequence that hits it infinitely often
with probability one. We don’t give the details here.

But from that we have in particular €2(b N/\/ﬁ , N=1,2,.)=4 as.
This implies Theorem 1'(i) by continuity of p and

Lemma 8. p(«) equals all of & for M= 3.

Proof. 1t suffices to show that, given any vector I=(l,), _, . wERM,
there exist a real number b and a matrix Ve «, s.t.
L+b=(V*)r, u=1.,M (5.31)

The difficulty about this linear system of equations for the M(M —1)/2
quantities (¥**)? is that it fails to give nonnegative solutions for arbitrary
choices of / and b. Thus the freedom in the choice of b is really necessary.
As an ansatz we consider a matrix of the type

fA 1A 2
12 _ 2t 1 13 _ 1731 2 2__ (23
=V > | 4 V > VBE=V >

pr— L= V#,ﬂ—1=\/z, u=4,..M (5.32)
Y =V%# =() otherwise
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with 4, >0, where the condition in the second line is empty for M =3. It
turns out then that the solution of (5.31) with =0 has the general form

A=h+hL—L+ =L+ 1—L+ - £(-1)"1)
b=l =L+ L~ —ls+lg—L+ - + (=DM, (5.33)
Aa=~L+L+L—(,—Is+lg—L+ - +(=1D)Y1,)

and

ha=li—Ils+ 1=+ - +(=1)"1,
As=Is—lg+ 1+ - +(=1)M*1,
Ae=lg—L+l+ - +(=1)M1, (5.34)

2M=IM

It suffices to prove the statement for /’s in the special form /5 >/, >/, and
(Lz=)1,=2L> .. 21,,>0. But, using this order relation, it follows for the
solution of (5.31) with 5=0 that 1,>0 for all 2<u <M, whereas 4, can
be possibly negative. But note that for the solution of (5.31) with 4, =0
and >0, we have 1,=5b>0 for M odd (resp. 1,=2b>0 for M even),
4,20 for 2<u < M. Thus, by adding a sufficiently large 5> 0 to the fixed
l,’s one can always force the corresponding 4, to become positive without
destroying the positivity of the other 4,’s. This proves the claim. ||
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